In this article, the TiO/SiO-np nanocomposite multilayer films were synthesized in a single step by reactive magnetron sputtering combined with a nanoparticle aerosol jet. The SiO nanoparticles (SiO-np) were introduced into a growing TiO thin film with different time sequences during deposition for a fixed duration. The SiO-np acting as impurities are introduced into the TiO to willingly disturb its growth and to cause growth defects in order to increase the specific surface area of the photocatalytic film.
View Article and Find Full Text PDFThe incorporation of nanometric-sized objects in conventional coatings can improve the properties of the matrix alone or give rise to new functionalities brought by the nanostructures. Current processes call on various shaping technologies that depend on the nature of the nano-inclusions and the matrix considered. Here, we present an integrated process based on the incorporation of nanoparticles using the aerosol route.
View Article and Find Full Text PDFInspired by a natural nano-mineral known as imogolite, aluminosilicate inorganic nanotubes are appealing systems for photocatalysis. Here, we studied two types of synthetic imogolites: one is completely hydrophilic (IMO-OH), while the other has a hydrophilic exterior and a hydrophobic interior (IMO-CH), enabling the encapsulation of organic molecules. We combined UV-Vis diffuse reflectance spectroscopy of imogolite powders and X-ray photoelectron spectroscopy of deposited imogolite films and isolated nanotubes agglomerates to obtain not only the band structure, but also the quantitative intra-wall polarization of both synthetic imogolites for the first time.
View Article and Find Full Text PDFMany studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change.
View Article and Find Full Text PDFThe Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser.
View Article and Find Full Text PDF