Publications by authors named "O Stulzaft"

Article Synopsis
  • Quinuclidinyl benzilate (QNB), a muscarinic antagonist labeled with carbon 11, was used to visualize central muscarinic acetylcholine receptors (mAChR) in baboons via PET imaging, demonstrating specific binding characteristics.
  • High levels of [11C]QNB binding were observed in the cerebral cortex and striatum, which are rich in mAChR, while lower levels in the cerebellum indicated non-specific binding, confirming known patterns of receptor distribution in primates.
  • The study found that the specific binding was modulated by other muscarinic antagonists like methyl-QNB and dexetimide, revealing a clear link between receptor occupancy, drug competition, and changes in brain
View Article and Find Full Text PDF

11,17 beta-Dihydroxy-6-methyl-17 alpha-(3-[18F]fluoro-prop-1- ynyl)androsta-1,4,6-trien-3-one [( 18F]RU 52461), an 18F-analog of RU 28362, was synthesized by bromide displacement with [18F]fluoride in 12-30% overall radiochemical yield (decay-corrected) within 140 min from end of bombardment (EOB). The specific activity was 900-1500 mCi/mumol (33.3-55.

View Article and Find Full Text PDF

The functional status of the dopaminergic system following striatal excitotoxic lesions was studied in living baboons by positron emission tomography (PET) using 6-[18F]fluoro-L-dopa as specific tracer for the presynaptic dopaminergic terminals and [76Br]bromolisuride as selective dopamine D2-receptor marker. The glutamate receptor agonist ibotenic acid (IA) was injected into the right caudate-putamen of six baboons to induce a neuropathological and behavioral model of Huntington's disease (HD). In vivo PET studies performed 3 to 6 months after the IA injections showed that subtotal excitotoxic lesions of the CP were accompanied by changes in the kinetic of [76Br]bromolisuride binding indicating a dose-dependent reduction in binding sites in the lesioned striatum of all IA-injected animals.

View Article and Find Full Text PDF

The in vivo kinetic analysis of dopamine D2 receptors was obtained in baboon brain using positron emission tomography (PET) and [76Br]bromolisuride [( 76Br]BLIS) as radioligand. An injection of a trace amount of [76Br]BLIS was followed 3 h later by an injection of a mixture of [76Br]BLIS and BLIS in the same syringe (coinjection experiment). A third injection performed at 6 h was either an excess of unlabeled ligand (displacement experiment) or a second coinjection.

View Article and Find Full Text PDF

Setoperone, a piperidine derivative known for its potent serotonin and moderate dopamine receptor blocking properties was labelled with the positron emitter 18F using a nucleophilic substitution on the nitro derivative. The general pattern of the in-vivo and in-vitro rat brain distribution of this new radioligand was consistent with the mapping of serotonin (5HT2) and dopamine (D2) receptors. The cortical binding of 18F-setoperone was selectively inhibited by ketanserin and not by sulpiride.

View Article and Find Full Text PDF