Publications by authors named "O Sporns"

The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Single cell RNA-seq (scRNA-seq) technologies provide unprecedented resolution representing transcriptomics at the level of single cell. One of the biggest challenges in scRNA-seq data analysis is the cell type annotation, which is usually inferred by cell separation approaches. In-silico algorithms that accurately identify individual cell types in ongoing single-cell sequencing studies are crucial for unlocking cellular heterogeneity and understanding the biological basis of diseases.

View Article and Find Full Text PDF

A growing body of research predicts individual cognitive ability levels from brain characteristics including functional brain connectivity. The majority of this research achieves statistically significant prediction performance but provides limited insight into neurobiological processes underlying the predicted concepts. The insufficient identification of predictive brain characteristics may present an important factor critically contributing to this constraint.

View Article and Find Full Text PDF

Background: The pathophysiology of attention-deficit/hyperactivity disorder (ADHD) is characterized by atypical brain network organization and dynamics. Although functional brain networks adaptively reconfigure across cognitive contexts, previous studies have largely focused on network dysfunction during the resting-state. This preliminary study examined how functional brain network organization and dynamics flexibly reconfigure across rest and two cognitive control tasks with different cognitive demands in 30 children with ADHD and 36 typically developing (TD) children (8-12 years).

View Article and Find Full Text PDF

Connectomics research is making rapid advances, although models revealing general principles of connectional architecture are far from complete. Our analysis of 10 published connection reports indicates that the adult rat brain interregional connectome has about 76,940 of a possible 623,310 axonal connections between its 790 gray matter regions mapped in a reference atlas, equating to a network density of 12.3%.

View Article and Find Full Text PDF