We describe semiparametric estimation and inference for causal effects using observational data from a single social network. Our asymptotic results are the first to allow for dependence of each observation on a growing number of other units as sample size increases. In addition, while previous methods have implicitly permitted only one of two possible sources of dependence among social network observations, we allow for both dependence due to transmission of information across network ties and for dependence due to latent similarities among nodes sharing ties.
View Article and Find Full Text PDF