We report on the thermalization of light carrying orbital angular momentum in multimode optical fibers, induced by nonlinear intermodal interactions. A generalized Rayleigh-Jeans distribution of asymptotic mode composition is obtained, based on the conservation of the angular momentum. We confirm our predictions by numerical simulations and experiments based on holographic mode decomposition of multimode beams.
View Article and Find Full Text PDFWe develop a comprehensive theory for describing the experimental beam profiles from multimode fiber Raman lasers. We take into account the presence of random linear mode coupling, Kerr beam self-cleaning and intra-cavity spatial filtering. All of these factors play a decisive role in shaping the Stokes beam, which has a predominant fundamental mode content.
View Article and Find Full Text PDFMultimode fibres provide a promising platform for boosting the capacity of fibre links and the output power of fibre lasers. The complex spatiotemporal dynamics of multimode beams may be controlled in spatial and temporal domains via the interplay of nonlinear, dispersive and dissipative effects. Raman nonlinearity induces beam cleanup in long graded-index fibres within a laser cavity, even for CW Stokes beams pumped by highly-multimode laser diodes (LDs).
View Article and Find Full Text PDFSpatial self-imaging, consisting of the periodic replication of the optical transverse beam profile along the propagation direction, can be achieved in guided wave systems when all excited modes interfere in phase. We exploited material defects photoluminescence for directly visualizing self-imaging in a few-mode, nominal singlemode SMF-28 optical fiber. Visible luminescence was excited by intense femtosecond infrared pulses via multiphoton absorption processes.
View Article and Find Full Text PDF