Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines.
View Article and Find Full Text PDFBackground: The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in the process as well as whether other genes are involved needs to be elucidated.
Methodology/principal Findings: In this study, the natural variation of the RTM genes was analysed at the amino acid level in relation with their functionality to restrict the long distance movement of Lettuce mosaic potyvirus (LMV).
In Arabidopsis thaliana Columbia (Col-0) plants, the restriction of Tobacco etch virus (TEV) long-distance movement involves at least three dominant RTM (restricted TEV movement) genes named RTM1, RTM2, and RTM3. Previous work has established that, while the RTM-mediated resistance is also effective against other potyviruses, such as Plum pox virus (PPV) and Lettuce mosaic virus (LMV), some isolates of these viruses are able to overcome the RTM mechanism. In order to identify the viral determinant of this RTM-resistance breaking, the biological properties of recombinants between PPV-R, which systemically infects Col-0, and PPV-PSes, restricted by the RTM resistance, were evaluated.
View Article and Find Full Text PDFIn compatible interactions between plants and viruses that result in systemic infection, symptom development is a major phenotypic trait. However, host determinants governing this trait are mostly unknown, and the mechanisms underlying it are still poorly understood. In a previous study on the Arabidopsis thaliana-Plum pox virus (PPV) pathosystem, we showed a large degree of variation in symptom development among susceptible accessions.
View Article and Find Full Text PDFMol Plant Microbe Interact
May 2006
Twelve Arabidopsis accessions were challenged with Plum pox potyvirus (PPV) isolates representative of the four PPV strains. Each accession supported local and systemic infection by at least some of the PPV isolates, but high variability was observed in the behavior of the five PPV isolates or the 12 Arabidopsis accessions. Resistance to local infection or long-distance movement occurred in about 40% of all the accession-isolate combinations analyzed.
View Article and Find Full Text PDF