Publications by authors named "O Shirai"

All-solid-state NO, K, NH, Na, and Ca ion-selective sensors (ISEs) were prepared using polyvinyl butyral (S-LEC®K KX-5). In the present case, polyvinyl butyral was used as a porous material to keep the internal solution of the respective ISE. All sensors exhibited near-Nernst responses in the concentration region between approximately 10 and 0.

View Article and Find Full Text PDF

Ready biodegradability tests conducted in accordance with the Organisation for Economic Co-operation and Development guidelines (test 301C or test 301F) are performed using activated sludge (AS) prepared by the Chemicals Evaluation and Research Institute (AS-CERI) or that taken from a sewage treatment plant (AS-STP). It had been reported that AS-CERI had lower activity than AS-STP in biodegrading test chemicals, and that biodegradation was accelerated by increasing the volume of the test medium. However, these phenomena have not been clarified from the perspective of the microbiota.

View Article and Find Full Text PDF

Bilirubin oxidase (BOD) is a bioelectrocatalyst that reduces dioxygen (O) to water and is capable of direct electron transfer (DET)-type bioelectrocatalysis via its electrode-active site (T1 Cu). BOD from Myrothecium verrucaria (mBOD) has been widely studied and has strong DET activity. mBOD contains two N-linked glycans (N-glycans) with N472 and N482 binding sites distal to T1 Cu.

View Article and Find Full Text PDF

The mechanism of directional propagation of action potential throughout a single cell was examined using a liquid-membrane model cell system. In the experiments on the liquid-membrane model cell system, liquid-membrane cells were constructed to mimic the function of K and voltage-gated Na channels, which play important roles in action potential propagation. These channel-mimicking cells were connected electrically, and a model cell system was composed of four parts within the one cell.

View Article and Find Full Text PDF

Bilirubin oxidase from Myrothecium verrucaria (mBOD) is a promising enzyme for catalyzing the four-electron reduction of dioxygen into water and realizes direct electron transfer (DET)-type bioelectrocatalysis. It has two N-linked glycans (N-glycans), and N472 and N482 are known as binding sites. Both binding sites located on opposite side of the type I (T1) Cu, which is the electrode-active site of BOD.

View Article and Find Full Text PDF