Cassini's Grand Finale orbits provided for the first time in-situ measurements of Saturn's topside ionosphere. We present the Pedersen and Hall conductivities of the top near-equatorial dayside ionosphere, derived from the in-situ measurements by the Cassini Radio and Wave Plasma Science Langmuir Probe, the Ion and Neutral Mass Spectrometer and the fluxgate magnetometer. The Pedersen and Hall conductivities are constrained to at least 10-10 S/m at (or close to) the ionospheric peak, a factor 10-100 higher than estimated previously.
View Article and Find Full Text PDFPrevious modeling studies of Titan's dayside ionosphere predict electron number densities that are roughly a factor of 2 higher than those observed by the RPWS/Langmuir probe. The issue can equivalently be described as the ratio between the calculated electron production rates and the square of the observed electron number densities resulting in roughly a factor of 4 higher effective recombination coefficient than expected from the ion composition and the electron temperature. Here we make an extended reassessment of Titan's dayside ionization balance, focusing on 34 flybys between TA and T120.
View Article and Find Full Text PDFEffects of solar EUV on positive ions and heavy negative charge carriers (molecular ions, aerosol, and/or dust) in Titan's ionosphere are studied over the course of almost 12 years, including 78 flybys below 1400 km altitude between TA (October 2004) and T120 (June 2016). The Radio and Plasma Wave Science/Langmuir Probe-measured ion charge densities (normalized by the solar zenith angle) show statistically significant variations with respect to the solar EUV flux. Dayside charge densities increase by a factor of ≈2 from solar minimum to maximum, while nightside charge densities are found to anticorrelate with the EUV flux and decrease by a factor of ≈3-4.
View Article and Find Full Text PDFJ Geophys Res Space Phys
October 2016
The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below ~1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere ( / ≤ 0.
View Article and Find Full Text PDF