Parenchyma of pulmonary cancers acquires contractile properties that resemble those of muscles but presents some particularities. These non-muscle contractile tissues could be stimulated either electrically or chemically (KCl). They present the Frank-Starling mechanism, the Hill hyperbolic tension-velocity relationship, and the tridimensional time-independent tension-velocity-length relationship.
View Article and Find Full Text PDFThermodynamic consequences of a three-hour long anoxia were investigated on the isolated mammalian rat myocardium. The anoxic heart operated in a far-from-equilibrium manner as attested by the non-linearity between the thermodynamic force and the thermodynamic flow. When subjected to slight fluctuations due to anoxia, the open far-from-equilibrium cardiac system presented a thermodynamic bifurcation at ~ 60 minutes of anoxia.
View Article and Find Full Text PDFNSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others).
View Article and Find Full Text PDFContraction of the heart is caused by actin filaments sliding along myosin filaments. This generates a frictional force inducing wear of the contractile apparatus. We postulated that this process could be exacerbated when the heart was submitted to severe anoxia.
View Article and Find Full Text PDF