Photosensitizers (PS) are ideally devoid of any activity in the absence of photoactivation, and rely on molecular oxygen for the formation of singlet oxygen ((1)O2) to produce cellular damage. Off-targets and tumor hypoxia therefore represent obstacles for the use of PS for cancer photodynamic therapy. Herein, we describe the characterization of OR141, a benzophenazine compound identified through a phenotypic screening for its capacity to be strictly activated by light and to kill a large variety of tumor cells under both normoxia and hypoxia.
View Article and Find Full Text PDFThere is an increasing demand for the development of sensitive enzymatic assays compatible with droplet-based microfluidics. Here we describe an original strategy, activity-fed translation (AFT), based on the coupling of enzymatic activity to in vitro translation of a fluorescent protein. We show that methionine release upon the hydrolysis of phenylacetylmethionine by penicillin acylase enabled in vitro expression of green fluorescent protein.
View Article and Find Full Text PDFHigh lactate concentration in tumors is associated with bad prognosis. Lactate is released by glycolytic cells in tumors and recaptured by oxidative cancer cells to feed the tricarboxylic acid (TCA) cycle after conversion into pyruvate. Monocarboxylate transporters (MCT) mediate these fluxes of proton-linked lactate and represent attractive targets to interrupt lactate shuttle and to inhibit tumor growth.
View Article and Find Full Text PDFUnder hypoxia, cancer cells consume glucose and release lactate at a high rate. Lactate was recently documented to be recaptured by oxygenated cancer cells to fuel the TCA cycle and thereby to support tumor growth. Monocarboxylate transporters (MCT) are the main lactate carriers and therefore represent potential therapeutic targets to limit cancer progression.
View Article and Find Full Text PDFDroplet-based microfluidics is a powerful tool for biology and chemistry as it allows the production and the manipulation of picoliter-size droplets acting as individual reactors. In this format, high-sensitivity assays are typically based on fluorescence, so fluorophore exchange between droplets must be avoided. Fluorogenic substrates based on the coumarin leaving group are widely used to measure a variety of enzymatic activities, but their application in droplet-based microfluidic systems is severely impaired by the fast transport of the fluorescent product between compartments.
View Article and Find Full Text PDF