Publications by authors named "O Scherzer"

We consider the problem of blob detection for uncertain images, such as images that have to be inferred from noisy measurements. Extending recent work motivated by astronomical applications, we propose an approach that represents the uncertainty in the position and size of a blob by a region in a three-dimensional scale space. Motivated by classic tube methods such as the taut-string algorithm, these regions are obtained from level sets of the minimizer of a total variation functional within a high-dimensional tube.

View Article and Find Full Text PDF

We provide computationally generated dataset simulating propagation of ultrasonic waves in viscous tissues in two and three dimensional domains. The dataset contains physical parameters of a human breast with a high-contrast inclusion, the acquisition setup with positions of sources and receivers, and the associated pressure-wave data at ultrasonic frequencies. We simulated the wave propagation based on seven different viscous models using the physical parameters of the breast.

View Article and Find Full Text PDF

In this paper we discuss a deterministic form of ensemble Kalman inversion as a regularization method for linear inverse problems. By interpreting ensemble Kalman inversion as a low-rank approximation of Tikhonov regularization, we are able to introduce a new sampling scheme based on the Nyström method that improves practical performance. Furthermore, we formulate an adaptive version of ensemble Kalman inversion where the sample size is coupled with the regularization parameter.

View Article and Find Full Text PDF

Single molecule localization microscopy (SMLM) has enormous potential for resolving subcellular structures below the diffraction limit of light microscopy: Localization precision in the low digit nanometer regime has been shown to be achievable. In order to record localization microscopy data, however, sample fixation is inevitable to prevent molecular motion during the rather long recording times of minutes up to hours. Eventually, it turns out that preservation of the sample's ultrastructure during fixation becomes the limiting factor.

View Article and Find Full Text PDF

We present an approach for variational regularization of inverse and imaging problems for recovering functions with values in a set of vectors. We introduce regularization functionals, which are derivative-free double integrals of such functions. These regularization functionals are motivated from double integrals, which approximate Sobolev semi-norms of intensity functions.

View Article and Find Full Text PDF