Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated.
View Article and Find Full Text PDFCardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear.
View Article and Find Full Text PDFActin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants () are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying .
View Article and Find Full Text PDFThe production of glass foams obtained by recycling post-consumer glass and textile industry processing waste is presented. The mechanical, thermal and acoustic properties were characterized as a function of process temperature and time. The results showed that it is possible to produce glass foams with thermal and acoustic insulation properties from a mixture consisting of 96.
View Article and Find Full Text PDFGiven the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.
View Article and Find Full Text PDF