The analysis of pedestrian GPS datasets is fundamental to further advance on the study and the design of walkable cities. The highest resolution GPS data can characterize micro-mobility patterns and pedestrians' micro-motives in relation to a small-scale urban context. Purposed-based recurrent mobility data inside people's neighbourhoods is an important source in these sorts of studies.
View Article and Find Full Text PDFIn this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal interactions, then the system will display NMB.
View Article and Find Full Text PDFSharing rides could drastically improve the efficiency of car and taxi transportation. Unleashing such potential, however, requires understanding how urban parameters affect the fraction of individual trips that can be shared, a quantity that we call shareability. Using data on millions of taxi trips in New York City, San Francisco, Singapore, and Vienna, we compute the shareability curves for each city, and find that a natural rescaling collapses them onto a single, universal curve.
View Article and Find Full Text PDFHuman mobility is becoming an accessible field of study, thanks to the progress and availability of tracking technologies as a common feature of smart phones. We describe an example of a scalable experiment exploiting these circumstances at a public, outdoor fair in Barcelona (Spain). Participants were tracked while wandering through an open space with activity stands attracting their attention.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2015
Complex network null models based on entropy maximization are becoming a powerful tool to characterize and analyze data from real systems. However, it is not easy to extract good and unbiased information from these models: A proper understanding of the nature of the underlying events represented in them is crucial. In this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given constraints is fundamental to build good null models for the case of networks with integer-valued adjacency matrices constructed from an aggregation of one or multiple layers.
View Article and Find Full Text PDF