Several studies have demonstrated, both in vitro and in animal models, the anti-tumor efficacy of high-dose ascorbate treatment against a variety of tumor entities, including glioblastoma, the most common and aggressive primary malignant brain tumor. The aim of this study was to investigate the effects of high-dose ascorbate as well as dehydroascorbic acid on human glioblastoma cell lines and to evaluate different treatment conditions for the combined administration of ascorbate with magnesium (Mg) and iron (Fe). Intracellular levels of reactive oxygen species and the induction of cell death following ascorbate treatment were also investigated.
View Article and Find Full Text PDFPurpose: Sandoz biosimilar denosumab (GP2411 [SDZ-deno]; Jubbonti/Wyost) is approved by the US FDA, EMA and Health Canada for all indications of reference denosumab (REF-deno; Prolia/Xgeva), a fully human IgG2κ monoclonal antibody that binds with high affinity and specificity to receptor activator of nuclear factor kappa-B ligand (RANKL). Denosumab blocks RANKL, preventing bone resorption and loss of bone density/architecture in conditions characterized by excessive bone loss such as osteoporosis in postmenopausal women and metastatic bone disease, among others.
Methods: This narrative review summarizes the totality of evidence (ToE) for SDZ-deno that supported its approval as Jubbonti/Wyost in the EU and US.
Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of [Formula: see text] W/cm[Formula: see text]. In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves.
View Article and Find Full Text PDFDespite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis.
View Article and Find Full Text PDFAscorbate acts as a prooxidant when administered parenterally at high supraphysiological doses, which results in the generation of hydrogen peroxide in dependence on oxygen. Most cancer cells are susceptible to the emerging reactive oxygen species (ROS). Accordingly, we evaluated high-dose ascorbate for the treatment of the B16F10 melanoma model.
View Article and Find Full Text PDF