Publications by authors named "O Razskazovskaya"

We demonstrate broadband THz generation driven by an ultrafast thin-disk laser (TDL) oscillator. By optical rectification of 50-fs pulses at 61 MHz repetition rate in a collinear geometry in crystalline GaP, THz radiation with a central frequency at around 3.4 THz and a spectrum extending from below 1 THz to nearly 7 THz are generated.

View Article and Find Full Text PDF

We demonstrate the performance of a novel multilayer dielectric reflective thin-film attenuator capable of reshaping the super-octave spectrum of near-single-cycle visible laser pulses without deteriorating the phase properties of the reflected light. These novel broadband attenuating mirrors reshape in a virtually dispersion-free manner the incident spectrum such that the carrier wavelength of the reflected pulses shifts from ∼700  nm (E=1.77  eV) to ∼540  nm (E=2.

View Article and Find Full Text PDF

The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics.

View Article and Find Full Text PDF

We report on design, production and implementation of a highly dispersive broadband dielectric multilayer mirror covering near ultraviolet range from 290 nm to 350 nm. The described mirrors, having 92% spectrally averaged reflectance in the ultraviolet range and ∼ 85 fs of group delay difference, that allow compression to ∼ 7 fs, provide a strong foundation for generation of few-fs pulses in the near ultraviolet.

View Article and Find Full Text PDF

Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz.

View Article and Find Full Text PDF