SAR QSAR Environ Res
October 2018
Assessment of the influence of six physicochemical properties used in the multiparameter optimization (MPO) approach for chemical penetration of the blood-brain barrier was carried out by means of application of logistic regression and multiple linear regression, using a data set of 578 diverse chemicals. It was found that use of an aggregation MPO-score descriptor did not give satisfactory results with central nervous system (CNS)/non-CNS classification. Thus an application of the MPO approach for CNS penetration is ambiguous.
View Article and Find Full Text PDFDetailed critical analysis of publications devoted to QSPR of aqueous solubility is presented in the review with discussion of four types of aqueous solubility (three different thermodynamic solubilities with unknown solute structure, intrinsic solubility, solubility in physiological media at pH=7.4 and kinetic solubility), variety of molecular descriptors (from topological to quantum chemical), traditional statistical and machine learning methods as well as original QSPR models.
View Article and Find Full Text PDFAqueous solubility at pH = 7.4 is a very important property for medicinal chemists because this is the pH value of physiological media. The present work describes the application of three different methods (support vector machine (SVM), random forest (RF) and multiple linear regression (MLR)) and three local quantitative structure-property relationship (QSPR) models (regression corrected by nearest neighbours (RCNN), arithmetic mean property (AMP) and local regression property (LoReP)) to construct stable QSPRs with clear mechanistic interpretation.
View Article and Find Full Text PDF32 Quantitative Structure-Property Relationship (QSPR) models were constructed for prediction of aqueous intrinsic solubility of liquid and crystalline chemicals. Data sets contained 1022 liquid and 2615 crystalline compounds. Multiple Linear Regression (MLR), Support Vector Machine (SVM) and Random Forest (RF) methods were used to construct global models, and k-nearest neighbour (kNN), Arithmetic Mean Property (AMP) and Local Regression Property (LoReP) were used to construct local models.
View Article and Find Full Text PDFSolubilities of crystalline organic compounds calculated according to AMP (arithmetic mean property) and LoReP (local one-parameter regression) models based on structural and physicochemical similarities are presented. We used data on water solubility of 2615 compounds in un-ionized form measured at 25±5 °C. The calculation results were compared with the equation based on the experimental data for lipophilicity and melting point.
View Article and Find Full Text PDF