Publications by authors named "O R Vinodhkumar"

Porcine Teschoviruses (PTVs) are ubiquitous enteric viral pathogens that infect pigs and wild boars worldwide. PTVs have been responsible for causing the severe clinical disease (Teschen disease) to asymptomatic infections. However, to date, limited information is available on large-scale epidemiological data and molecular characterization of PTVs in several countries.

View Article and Find Full Text PDF

The wound healing process in rodents (rats and mice) and lagomorphs (rabbits) predominantly relies on wound contraction rather than re-epithelialization and granulation tissue formation. As a result, existing laboratory animal models for wound healing often fail to mimic human wound healing mechanisms accurately. This study introduces a standardized rabbit model with superior translational potential for skin wound healing research.

View Article and Find Full Text PDF

Hydrogels are commonly used as carriers for cell delivery due to their similarities to the extracellular matrix. A contraction-suppressed full-thickness wound model was used to evaluate the therapeutic potential of Pluronic F127 (PF127) hydrogel loaded with adipose-derived stromal vascular fraction (AdSVF), mesenchymal stem cells (AdMSC), and conditioned media (AdMSC-CM) for the repair of wounds in a rabbit model. The experimental study was conducted on forty-eight healthy adult New Zealand white rabbits randomly divided into eight groups with six animals each and treated with AdSVF, AdMSC, and AdMSC-CM as an injectable or topical preparation.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) has emerged as a cornerstone in veterinary regenerative medicine. The present study evaluated the impact of the operator on the qualitative and quantitative features of non-activated PRP derived from canine whole blood. Blood was collected in anticoagulant acid citrate dextrose from twelve healthy adult dogs and PRP was prepared according to the double-spin method.

View Article and Find Full Text PDF

Background: Stem cell-based therapies display immense potential in regenerative medicine, highlighting the crucial significance of devising efficient delivery methods. This study centers on a pioneering approach that utilizes Pluronic F127 (PF127) as a thermoresponsive and injectable hydrogel designed for the encapsulation of adipose-derived mesenchymal stem cells (AdMSCs).

Methods: The degradation profile, gelation time, and microstructure of the PF127 hydrogel were thoroughly examined.

View Article and Find Full Text PDF