The present study focuses on the adaptive development of a key peripheral component of conventional electrohydrodynamic atomisation (EHDA) systems, namely spraying needles (also referred to as nozzles or spinnerets). Needle geometry and planar alignment are often overlooked. To explore potential impact, curcumin-loaded polylactic-co-glycolic acid (PLGA) and methoxypolyethylene glycol amine (PEG)-based nanoparticles were fabricated.
View Article and Find Full Text PDFAddressing the growing challenges of periodontal and peri-implant diseases, this study first reports a promising advancement in precision dentistry: an intricately formulated biopolymer spray designed for precise, localized drug delivery during tailored dental procedures. Poly (lactic--glycolic acid) (PLGA), recognized for its controlled release, biodegradability, and FDA-approved biocompatibility, forms the core of this formulation. Utilizing the double emulsion method, PLGA microparticles (PLGA-MPs) were loaded with dental antibiotics: sodium amoxicillin (AMX-Na), trihydrate amoxicillin (AMX-Tri), and metronidazole (Met).
View Article and Find Full Text PDFThis study is aimed to fabricate tetanus toxoid laden microneedle patches by using a polymeric blend comprising of polyvinyl pyrrolidone and sodium carboxymethyl cellulose as base materials and sorbitol as a plasticizer. The tetanus toxoid was mixed with polymeric blend and patches were prepared by using vacuum micromolding technique. Microneedle patches were evaluated for physical attributes such as uniformity of thickness, folding endurance, and swelling profile.
View Article and Find Full Text PDFAims: To develop an essential oil (EO)-loaded textile coating using an environmentally friendly microemulsion technique to achieve both antimicrobial and mosquito repellent functionalities.
Methods And Results: Minimum inhibitory concentrations and fractional inhibitory concentrations of litsea, lemon and rosemary EOs were determined against Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa and Trichophyton rubrum. A 1 : 2 mixture of litsea and lemon EOs inhibited all the microorganisms tested and was incorporated into a chitosan-sodium alginate assembly by a microemulsification process.