Binz et al. propose meta-learning as a promising avenue for modelling human cognition. They provide an in-depth reflection on the advantages of meta-learning over other computational models of cognition, including a sound discussion on how their proposal can accommodate neuroscientific insights.
View Article and Find Full Text PDFInclusive design does not stop at removing physical obstacles such as staircases. It also involves identifying architectural features that impose sensory burdens, such as repetitive visual patterns that are known to potentially cause dizziness or visual discomfort. In order to assess their influence on human gait and its stability, three repetitive patterns-random dots, repetitive stripes, and repetitive waves (Lisbon pattern)-were displayed in a coloured and greyscale variant in a virtual reality (VR) environment.
View Article and Find Full Text PDFMuch of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics.
View Article and Find Full Text PDFPrey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter.
View Article and Find Full Text PDFMultifarious sources of selection shape visual signals and can produce phenotypic divergence. Theory predicts that variance in warning signals should be minimal due to purifying selection, yet polymorphism is abundant. While in some instances divergent signals can evolve into discrete morphs, continuously variable phenotypes are also encountered in natural populations.
View Article and Find Full Text PDF