Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.
Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).
Purpose: To evaluate the amplitude of movement in anophthalmic sockets reconstructed with conical or spherical orbital implants with and without an external ocular prosthesis (EOP), and whether the fornix depth could play a role.
Methods: Prospective observational study involving unilateral anophthalmic sockets evaluated the amplitude of movement with conical (20 subjects) or spherical (16) non-porous orbital implants, with and without an EOP, having the contralateral eye as the control group. Standardized photographs were obtained in the four gaze directions and measurements were performed using the Image J software.
The ideal implant for anophthalmic socket reconstruction has yet to be developed. Biosilicate, a highly bioactive glass-ceramic, has been used in the composition of conical implants, which were initially tested in rabbit orbits with excellent results. However, the use of this material and the conical shape of the implants require further study in the human anophthalmic socket.
View Article and Find Full Text PDFBiomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidation, have been emerging as very promising strategies to treat bone fractures. Despite its well-known positive effects of biosilicate (BS) on osteogenesis, its use as bone grafts in critical situations such as bone defects of high dimensions or in non-consolidated fractures may not be sufficient to stimulate tissue repair. Consequently, several approaches have been explored to improve the bioactivity of BS.
View Article and Find Full Text PDFIntroduction: Collagen from marine esponges has been used as a promising material for tissue engineering proposals. Similarly, photobiomodulation (PBM) is able of modulating inflammatory processes after an injury, accelerating soft and hard tissue healing and stimulating neoangiogenesis. However, the effects of the associated treatments on bone tissue healing have not been studied yet.
View Article and Find Full Text PDF