Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography-all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process.
View Article and Find Full Text PDFHigh-harmonic generation (HHG) is a powerful tool to generate coherent attosecond light pulses in the extreme ultraviolet. However, the low conversion efficiency of HHG at the single atom level poses a significant practical limitation for many applications. Enhancing the efficiency of the process defines one of the primary challenges in the application of HHG as an advanced XUV source.
View Article and Find Full Text PDFProbing electronic wave functions of polyatomic molecules is one of the major challenges in high-harmonic spectroscopy. The extremely nonlinear nature of the laser-molecule interaction couples the multiple degrees of freedom of the probed system. We combine two-dimensional control of the electron trajectories and vibrational control of the molecules to disentangle the two main steps in high-harmonic generation-ionization and recombination.
View Article and Find Full Text PDF