Publications by authors named "O Pearl"

Traditional methods for measuring blood oxygen use multiple wavelengths, which produce an intrinsic error due to ratiometric measurements. These methods assume that the absorption changes with the wavelength, but in fact the scattering changes as well and cannot be neglected. We found that if one measures in a specific angle around a cylindrical tissue, called the iso-pathlength (IPL) point, the reemitted light intensity is unaffected by the tissue's scattering.

View Article and Find Full Text PDF

Wearable sensing using inertial measurement units (IMUs) is enabling portable and customized gait retraining for knee osteoarthritis. However, the vibrotactile feedback that users receive directly depends on the accuracy of IMU-based kinematics. This study investigated how kinematic errors impact an individual's ability to learn a therapeutic gait using vibrotactile cues.

View Article and Find Full Text PDF

Inertial sensing and computer vision are promising alternatives to traditional optical motion tracking, but until now these data sources have been explored either in isolation or fused via unconstrained optimization, which may not take full advantage of their complementary strengths. By adding physiological plausibility and dynamical robustness to a proposed solution, biomechanical modeling may enable better fusion than unconstrained optimization. To test this hypothesis, we fused video and inertial sensing data via dynamic optimization with a nine degree-of-freedom model and investigated when this approach outperforms video-only, inertial-sensing-only, and unconstrained-fusion methods.

View Article and Find Full Text PDF