The number of procedures performed with robotic surgery may exceed one million globally in 2018. The continual lack of haptic feedback, however, forces surgeons to rely on visual cues in order to avoid breaking sutures due to excessive applied force. To mitigate this problem, the authors developed and validated a novel grasper-integrated system with biaxial shear sensing and haptic feedback to warn the operator prior to anticipated suture breakage.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
This paper describes the design, microfabrication, and characterization of a miniature force sensor for providing tactile feedback in robotic surgical systems. We demonstrate for the first time a microfabricated sensor that can provide triaxial sensing (normal, x-shear, y-shear) in a single sensor element that can be integrated with commercial robotic surgical graspers. Features of this capacitive force sensor include differential sensing in the shear directions as well as a design where all electrical connections are on one side, leaving the backside pristine as the sensing face.
View Article and Find Full Text PDFBackground: Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies.
View Article and Find Full Text PDFArrays of carbon nanotube (CNT) microelectrodes (nominal geometric surface areas 20-200 μm(2)) were fabricated by photolithography with chemical vapor deposition of randomly oriented CNTs. Raman spectroscopy showed strong peak intensities in both G and D bands (G/D = 0.86), indicative of significant disorder in the graphitic layers of the randomly oriented CNTs.
View Article and Find Full Text PDF