Publications by authors named "O Pasquier"

Background: The therapeutic potential of relaxin for heart failure and renal disease in clinical trials is hampered by the short half-life of serelaxin. Optimization of fatty acid-acetylated single-chain peptide analogues of relaxin culminated in the design and synthesis of R2R01, a potent and selective RXFP1 agonist with subcutaneous bioavailability and extended half-life.

Experimental Approach: Cellular assays and pharmacological models of RXFP1 activation were used to validate the potency and selectivity of R2R01.

View Article and Find Full Text PDF

We recently described C18 fatty acid acylated peptides as a new class of potent long-lasting single-chain RXFP1 agonists that displayed relaxin-like activities in vivo. Early pharmacokinetics and toxicological studies of these stearic acid acylated peptides revealed a relevant oxidative metabolism occurring in dog and minipig, and also seen at a lower extent in monkey and rat. Mass spectrometry combined to NMR spectroscopy studies revealed that the oxidation occurred, unexpectedly, on the stearic acid chain at ω-1, ω-2 and ω-3 positions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new peptide called SA10SC-RLX that has a longer half-life and can be administered subcutaneously, overcoming the limitations of recombinant relaxin-2 that requires intravenous use.
  • SA10SC-RLX has high activity on human RXFP1, showing positive renal effects in rats, such as increased kidney blood flow and reduced resistance, similar to relaxin's effects in humans.
  • This new peptide represents a promising option for treating chronic fibrotic and cardiovascular diseases, as it allows for once-daily subcutaneous administration, making it more practical for patients.
View Article and Find Full Text PDF
Article Synopsis
  • Human relaxin-2 is a hormone important for mediating blood flow changes during pregnancy and has potential benefits in treating acute heart failure, but its clinical use is limited due to a short half-life and requirement for intravenous administration.
  • Researchers developed long-acting relaxin peptide mimetics by modifying the B-chain of relaxin, leading to simpler and more potent peptide agonists for the relaxin receptor RXFP1.
  • These new lipidated peptide agonists demonstrated high activity, better bioavailability when taken subcutaneously, and longer half-lives, making them promising candidates for wider therapeutic use.
View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. Here, we combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles.

View Article and Find Full Text PDF