Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine.
View Article and Find Full Text PDFLacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides.
View Article and Find Full Text PDFSynechococsins represent a diverse group of class II lanthipeptides from the prochlorosin family, produced by the marine picocyanobacterium Synechococcus. A single strain can produce multiple SyncA peptides through modification by SyncM, a bifunctional lanthipeptide synthetase. Despite the prevalence of these lanthipeptides in nature, their biological functions remain elusive, even for the most studied group, Prochlorococcus MIT9313.
View Article and Find Full Text PDFLanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.
View Article and Find Full Text PDF