The mammalian heart is a complex organ formed during development via highly diverse populations of progenitor cells. The origin, timing of recruitment, and fate of these progenitors are vital for the proper development of this organ. The molecular mechanisms that govern the morphogenesis of the heart are essential for understanding the pathogenesis of congenital heart diseases and embryonic cardiac regeneration.
View Article and Find Full Text PDFTracing and manipulating cells in embryos are essential to understand development. Lipophilic dye microinjections, viral transfection and iontophoresis have been key to map the origin of the progenitor cells that form the different organs in the post-implantation mouse embryo. These techniques require advanced manipulation skills and only iontophoresis, a demanding approach of limited efficiency, has been used for single-cell labelling.
View Article and Find Full Text PDFEarly heart development depends on the coordinated participation of heterogeneous cell sources. As pioneer work from Adriana C. Gittenberger-de Groot demonstrated, characterizing these distinct cell sources helps us to understand congenital heart defects.
View Article and Find Full Text PDFThe Spanish Society for Developmental Biology (SEBD) organized its 17th meeting in November 2020 (herein referred to as SEBD2020). This meeting, originally programmed to take place in the city of Bilbao, was forced onto an online format due to the SARS-CoV2, COVID-19 pandemic. Although, we missed the live personal interactions and missed out on the Bilbao social scene, we were able to meet online to present our work and discuss our latest results.
View Article and Find Full Text PDF