Resurrection ecology (RE) is a very powerful approach to address a wide range of question in ecology and evolution. This approach rests on using appropriate model systems, and only few are known to be available. In this study, we show that has multiple attractive features (short generation time, cyst bank and collections, well-documented phylogeography, and ecology) for a good RE model.
View Article and Find Full Text PDFStressful environments affect life-history components of fitness through (i) instantaneous detrimental effects, (ii) historical (carry-over) effects and (iii) history-by-environment interactions, including acclimation effects. The relative contributions of these different responses to environmental stress are likely to change along life, but such ontogenic perspective is often overlooked in studies of tolerance curves, precluding a better understanding of the causes of costs of acclimation, and more generally of fitness in temporally fine-grained environments. We performed an experiment in the brine shrimp Artemia to disentangle these different contributions to environmental tolerance, and investigate how they unfold along life.
View Article and Find Full Text PDFSymbiosis generally causes an expansion of the niche of each partner along the axis for which a service is mutually provided. However, for other axes, the niche can be restricted to the intersection of each partner's niche and can thus be constrained rather than expanded by mutualism. We explore this phenomenon using Artemia as a model system.
View Article and Find Full Text PDFParthenogenesis (reproduction through unfertilized eggs) encompasses a variety of reproduction modes with (automixis) or without (apomixis) meiosis. Different modes of automixis have very different genetic and evolutionary consequences but can be particularly difficult to tease apart. In this study, we propose a new method to discriminate different types of automixis from population-level genetic data.
View Article and Find Full Text PDFBackground: Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families.
View Article and Find Full Text PDF