Publications by authors named "O Muntaner"

beta-Arrestins (betaarr) are multifunctional adaptor proteins that can act as scaffolds for G protein-coupled receptor activation of mitogen-activated protein kinases (MAPK). Here, we identify the actin-binding and scaffolding protein filamin A (FLNA) as a betaarr-binding partner using Son of sevenless recruitment system screening, a classical yeast two-hybrid system, coimmunoprecipitation analyses, and direct binding in vitro. In FLNA, the betaarr-binding site involves tandem repeat 22 in the carboxyl terminus.

View Article and Find Full Text PDF

Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous beta-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of beta-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged beta-arrestins and resonance energy transfer (BRET and FRET) in living cells.

View Article and Find Full Text PDF

Ginkgolide B (GKB) is a bioactive component of the standardized extract from the leaves of the Ginkgo biloba tree (EGb 761), which is used in Chinese and in occidental medicine. GKB is known as a platelet-activating factor receptor antagonist. Here, we provide evidence that GKB per se (0.

View Article and Find Full Text PDF

The beta(1)-adrenergic receptor (beta(1)AR) is a major mediator of catecholamine effects in human heart. Patients with heart failure who were hetero- or homozygous for the Gly-49 variant of the beta(1)AR (Gly-49-beta(1)AR) showed improved long-term survival as compared with those with the Ser-49 genotype. Here, the functional consequences of this polymorphism were studied in cells expressing either variant.

View Article and Find Full Text PDF

The process of clathrin-mediated endocytosis tightly regulates signaling of the superfamily of seven-transmembrane G protein-coupled receptors (GPCRs). A fundamental question in the cell biology of membrane receptor endocytosis is whether activated receptors can initiate the formation of clathrin-coated pits (CPs) or whether they are simply mobilized to pre-existing CPs. Here, using various approaches, including a dynamic assay to monitor the distribution of CPs and GPCR-beta-arrestin complexes in live HeLa cells, we demonstrate for the first time that activated GPCRs do not initiate the de novo formation of CPs but instead are targeted to pre-existing CPs.

View Article and Find Full Text PDF