Publications by authors named "O Mnie-Filali"

Article Synopsis
  • An amendment to the original paper has been published.
  • You can find the amendment through a link provided at the top of the paper.
  • This additional information could be important for understanding the updated content.
View Article and Find Full Text PDF
Article Synopsis
  • ChAT-VIP interneurons, a special type of neuron in the brain's cortex, play a key role in signaling by directly exciting nearby neurons using acetylcholine (ACh) for fast communication.
  • These neurons are connected to both interneurons and pyramidal neurons across different layers of the medial prefrontal cortex (mPFC), highlighting their widespread influence.
  • Importantly, ChAT-VIP neurons help regulate attention behaviors in a unique way compared to other ACh sources in the brain, indicating their distinct functional role in cognitive processes.
View Article and Find Full Text PDF

Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known.

View Article and Find Full Text PDF

Aim: Studies using S- and R-enantiomers of the SSRI citalopram have shown that R-citalopram exerts an antagonistic effect on the efficacy of the antidepressant S-citalopram (escitalopram) through an interaction at an allosteric modulator site on the serotonin transporter (SERT). Here, we show that protein kinase signaling systems are involved in the allosteric modulation of the SERT in vivo and in vitro.

Methods: We assessed the effects of nonspecific protein kinase inhibitor staurosporine in the action of escitalopram and/or R-citalopram using electrophysiological and behavioral assays in rats and cell surface SERT expression measures in serotoninergic cells.

View Article and Find Full Text PDF

A subset of monoamine neurons releases glutamate as a cotransmitter due to presence of the vesicular glutamate transporters VGLUT2 or VGLUT3. In addition to mediating vesicular loading of glutamate, it has been proposed that VGLUT3 enhances serotonin (5-HT) vesicular loading by the vesicular monoamine transporter (VMAT2) in 5-HT neurons. In dopamine (DA) neurons, glutamate appears to be released from specialized subsets of terminals and it may play a developmental role, promoting neuronal growth and survival.

View Article and Find Full Text PDF