Introduction: Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) possess a strong ability to modulate the immune response, executed via cytokine-boosted paracrine and direct cell-to-cell contact mechanisms. This reciprocal interaction between immune cells and hPDL-MSCs is influenced by 1,25-dihydroxyvitamin-D (1,25(OH)D). In this study, the participation of different immunomodulatory mechanisms on the hPDL-MSCs-based effects of 1,25(OH)D on CD4 T lymphocytes will be elucidated using different co-culture models with various cytokine milieus.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) are multipotent, progenitor cells that reside in tissues across the human body, including the periodontal ligament (PDL) and gingiva. They are a promising therapeutic tool for various degenerative and inflammatory diseases. However, different heterogeneity levels caused by tissue-to-tissue and donor-to-donor variability, and even intercellular differences within a given MSCs population, restrict their therapeutic potential.
View Article and Find Full Text PDFBackground: Mesenchymal stromal cells (MSCs) isolated from the periodontal ligament (hPDL-MSCs) have a high therapeutic potential, presumably due to their immunomodulatory properties. The interaction between hPDL-MSCs and immune cells is reciprocal and executed by diverse cytokine-triggered paracrine and direct cell-to-cell contact mechanisms. For the first time, this study aimed to directly compare the contribution of various mechanisms on this reciprocal interaction using different in vitro co-culture models at different inflammatory milieus.
View Article and Find Full Text PDFThe differentiation ability of human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) in vivo is limited; therefore, some studies considered strategies involving their pre-differentiation in vitro. However, it is not known how the differentiation of hPDL-MSCs influences their immunomodulatory properties. This study investigated how osteogenic differentiation of hPDL-MSCs affects their ability to suppress CD4 T-lymphocyte proliferation.
View Article and Find Full Text PDFThe natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels.
View Article and Find Full Text PDF