Objective: To develop and validate a device that measures the pressure exerted by forceps on the fetal head for clinical use.
Background: The lack of clinical tools to quantify forceps pressure on the fetal head may impact maternal and neonatal outcomes. Existing studies have not measured the direct contact pressure between forceps blades and the fetal head, highlighting the need for innovation.
Breast cancer concerns 1 in 8 women in the world and is followed in 40% of cases by a mastectomy. Only 14% of women receive reconstructive surgery because of unfavorable clinical issues. The need of innovative tissue engineering devices leads Lattice Medical company to bring a new 3D-printed device, allowing the regeneration of soft tissue in order to replace the withdrawn breast.
View Article and Find Full Text PDFIntroduction And Hypothesis: In order to improve the knowledge POP physiopathology and POP repair, a generic biomechanical model of the female pelvic system has been developed. In the literature, no study has currently evaluated apical prolapse repair by posterior sacrospinous ligament fixation using a generic model nor a patient-specific model that personalize the management of POP and predict surgical outcomes based on the patient's pre-operative Magnetic Resonance Imaging. The aim of our study was to analyze the influence of a right and/or left sacrospinous ligament fixation and the distance between the anchorage area and the ischial spine on the pelvic organ mobility using a generic and a patient-specific Finite Element model (FEM) of the female pelvic system during posterior sacrospinous ligament fixation (SSF).
View Article and Find Full Text PDFIntroduction: To assess the feasibility of a realistic model for learning oral flaps using 3D printing technology.
Materials And Methods: A mould was designed to reproduce the mandibular gingival mucosa, and a mandibular model was created using a three-dimensional printer for training undergraduate students to perform gingival flaps. After a short interview about its use, the participants were asked to use the simulator and provide feedback using a 5-point Likert questionnaire.
Comput Methods Biomech Biomed Engin
August 2022
The mobility of pelvic organs is the result of an equilibrium called Pelvic Static characterizing the balance between the properties and geometries of organs, suspensions and support system. Any imbalance in this complex system can cause of pelvic static disorder. Genital prolapse is a common hypermobility pathology which is complex, multi factorial and its surgical management has high rate of complications.
View Article and Find Full Text PDF