Publications by authors named "O Maximyuk"

Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc.

View Article and Find Full Text PDF

Numerous studies reported an association between GABA R subunit genes and epilepsy, eating disorders, autism spectrum disorders, neurodevelopmental disorders, and bipolar disorders. This study was aimed to find some potential positive allosteric modulators and was performed by combining the in silico approach with further in vitro evaluation of its real activity. We started from the GABA R-diazepam complexes and assembled a lipid embedded protein ensemble to refine it via molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

Tissue acidification causes sustained activation of primary nociceptors, which causes pain. In mammals, acid-sensing ion channels (ASICs) are the primary acid sensors; however, Na/H exchangers (NHEs) and TRPV1 receptors also contribute to tissue acidification sensing. ASICs, NHEs, and TRPV1 receptors are found to be expressed in nociceptive nerve fibers.

View Article and Find Full Text PDF

It is well established that temperature affects the functioning of almost all biomolecules and, consequently, all cellular functions. Here, we show how temperature variations within a physiological range affect primary afferents' spontaneous activity in response to chemical nociceptive stimulation. An mouse hind limb skin-saphenous nerve preparation was used to study the temperature dependence of single C-mechanoheat (C-MH) fibers' spontaneous activity.

View Article and Find Full Text PDF