Metal-dioxygen species are important intermediates formed during dioxygen activations by metalloenzymes in various biological processes, by catalysts in fuel cells, and prior to O evolution by photosystem II. In this work, we focus on manganese-porphyrin complexes using tetramesitylporphyrin ligand (TMP) to explore changes in Mn K-edge X-ray absorption spectroscopy (XAS) associated with the formation of Mn-hydroxide and Mn-O peroxide species. With limited spectroscopic characterization of these compounds, Mn K X-ray emission spectroscopy (XES), XAS, density functional theory (DFT), and time-dependent DFT (TD-DFT) analysis will enhance our understanding of their complex electronic structure.
View Article and Find Full Text PDFStabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kβ nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS).
View Article and Find Full Text PDFAstroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND).
View Article and Find Full Text PDFA high-valent manganese(IV)-hydroxo porphyrin π-cation radical complex, [Mn(IV)(OH)(Porp)(X)], was synthesized and characterized spectroscopically. The Mn porphyrin intermediate was highly reactive in alkane hydroxylation and oxygen atom transfer reactions. More importantly, the Mn porphyrin intermediate reacted with water at a fast rate, resulting in the dioxygen evolution.
View Article and Find Full Text PDF