The advent of metasurfaces has revolutionized the design of optical instruments, and recent advancements in fabrication techniques are further accelerating their practical applications. However, conventional top-down fabrication of intricate nanostructures proves to be expensive and time-consuming, posing challenges for large-scale production. Here, we propose a cost-effective bottom-up approach to create nanostructure arrays with arbitrarily complex meta-atoms displaying single nanoparticle lateral resolution over submillimeter areas, minimizing the need for advanced and high-cost nanofabrication equipment.
View Article and Find Full Text PDFWe present the simple synthesis of a star-shape non-fullerene acceptor (NFA) for application in organic solar cells. This NFA possesses a D(A) structure in which the electron-donating core is an aza-triangulene unit and we report the first crystal structure for a star shape NFA based on this motive. We fully characterized this molecule's optoelectronic properties in solution and thin films, investigating its photovoltaic properties when blended with PTB7-Th as the electron donor component.
View Article and Find Full Text PDFThis paper presents the numerical simulation and fabrication of a metasurface composed of silver nanorings with a split-ring gap. These nanostructures can exhibit optically-induced magnetic responses with unique possibilities to control absorption at optical frequencies. The absorption coefficient of the silver nanoring was optimized by performing a parametric study with Finite Difference Time Domain (FDTD) simulations.
View Article and Find Full Text PDFLarge scale and low-cost nanopatterning of materials is of tremendous interest for optoelectronic devices. Nanoimprint lithography has emerged in recent years as a nanofabrication strategy that is high-throughput and has a resolution comparable to that of electron-beam lithography (EBL). It is enabled by pattern replication of an EBL master into polydimethylsiloxane (PDMS), that is then used to pattern a resist for further processing, or a sol-gel that could be calcinated into a solid material.
View Article and Find Full Text PDFThe combination of nuclear and electron magnetic resonance techniques, in pulse and continuous wave regimes, is used to unravel the nature and features of the light-induced magnetic state arising at the surface of chemically prepared zinc oxide nanoparticles (NPs) occurring under 120 K when subjected to a sub-bandgap (405 nm) laser excitation. It is shown that the four-line structure observed around g ∼ 2.00 in the as-grown samples (beside the usual core-defect signal at g ∼ 1.
View Article and Find Full Text PDF