The influence of coadsorbed ions on adsorbate diffusion, an inherent effect at solid-liquid interfaces, was studied for adsorbed sulfur on Ag(100) electrodes in the presence of bromide or iodide. Quantitative in situ high-speed scanning tunnelling microscopy (video-STM) measurements were performed both in the potential regime of the c(2×2) halide adlayer at its saturation coverage and in the regime of a disordered adlayer where the halide coverage increases with potential. These studies reveal a surprising non-monotonic potential dependence of Sad diffusion with an initial increase with halide coverage, followed by a decrease upon halide adlayer ordering into the c(2×2) structure.
View Article and Find Full Text PDFUnderstanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe.
View Article and Find Full Text PDFElectrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of and studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding.
View Article and Find Full Text PDFAg-decorated Cu electrocatalysts are of great interest for electrochemical CO reduction, because of an increased yield of multi-carbon products. Here, we present studies of well-defined AgCu electrodes by scanning tunneling microscopy. These bimetallic model electrocatalysts are prepared by electrodepositing submonolayer Ag coverages on Cu(100) in 0.
View Article and Find Full Text PDFFollowing the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation.
View Article and Find Full Text PDF