Publications by authors named "O M Selivanova"

The incorporation of photoproteins into proteins of interest allows the study of either their localization or intermolecular interactions in the cell. Here we demonstrate the possibility of in vivo incorporating the photoprotein enhanced green fluorescent protein (EGFP) or luciferase (GLuc) into the tetradecameric quaternary structure of GroEL chaperonin and describe some physicochemical properties of the labeled chaperonin. Using size-exclusion and affinity chromatography, electrophoresis, fluorescent and electron transmission microscopy (ETM), small-angle X-ray scattering (SAXS), and bioluminescence resonance energy transfer (BRET), we show the following: (i) The GroEL-EGFP is evenly distributed within normally divided cells, while gigantic undivided cells are characterized by the uneven distribution of the labeled GroEL which is mainly localized close to the cellular periplasm; (ii) EGFP and likely GLuc are located within the inner cavity of one of the two GroEL chaperonin rings and do not essentially influence the protein oligomeric structure; (iii) GroEL containing either EGFP or GLuc is capable of interacting with non-native proteins and the cochaperonin GroES.

View Article and Find Full Text PDF

Background: An extensive study of the folding and stability of proteins and their complexes has revealed a number of problems and questions that need to be answered. One of them is the effect of chaperones on the process of fibrillation of various proteins and peptides.

Methods: We studied the effect of molecular chaperones, such as GroEL and α-crystallin, on the fibrillogenesis of the Aβ(1-42) peptide using electron microscopy and surface plasmon resonance.

View Article and Find Full Text PDF

Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer's, Parkinson's and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures.

View Article and Find Full Text PDF

Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation.

View Article and Find Full Text PDF

To date, some scientific evidence (limited proteolysis, mass spectrometry analysis, electron microscopy (EM)) has accumulated, which indicates that the generally accepted model of double-stranded of filamentous actin (F-actin) organization in eukaryotic cells is not the only one. This entails an ambiguous understanding of many of the key cellular processes in which F-actin is involved. For a detailed understanding of the mechanism of F-actin assembly and actin interaction with its partners, it is necessary to take into account the polymorphism of the structural organization of F-actin at the molecular level.

View Article and Find Full Text PDF