Temporally modulated electron beams have a wide array of applications ranging from the generation of coherently enhanced electromagnetic radiation to the resonant excitation of electromagnetic wakefields in advanced-accelerator concepts. Likewise producing low-energy ultrashort microbunches could be useful for ultrafast electron diffraction and new accelerator-based light-source concepts. In this Letter we propose and experimentally demonstrate a passive microbunching technique capable of forming a picosecond bunch train at ∼6 MeV.
View Article and Find Full Text PDFParticle-beam-driven plasma wakefield acceleration (PWFA) enables various novel high-gradient techniques for powering future compact light-source and high-energy physics applications. Here, a driving particle bunch excites a wakefield response in a plasma medium, which may rapidly accelerate a trailing witness beam. In this Letter, we present the measurement of ratios of acceleration of the witness bunch to deceleration of the driver bunch, the so-called transformer ratio, significantly exceeding the fundamental theoretical and thus far experimental limit of 2 in a PWFA.
View Article and Find Full Text PDFSelf-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured.
View Article and Find Full Text PDF