Publications by authors named "O Le Thuc"

Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges.

View Article and Find Full Text PDF

Oxytocin-expressing paraventricular hypothalamic neurons (PVN neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVN neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVN neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet.

View Article and Find Full Text PDF

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism.

View Article and Find Full Text PDF

Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Hypothalamic astrocytes respond significantly to high-caloric diets, particularly focusing on their location and molecular distribution in the arcuate nucleus (ARC) of the hypothalamus.
  • The study utilized RNA sequencing and proteomics to uncover distinct molecular profiles in astrocytes based on their anatomical location, highlighting a major reprogramming in response to a high-fat high-sugar (HFHS) diet.
  • Single-cell sequencing revealed that astrocytes exhibit unique time- and cell-specific transcriptomic responses to HFHS diets, with a notable increase in specific astrocyte populations and changes in their spatial characteristics.
View Article and Find Full Text PDF