Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.
View Article and Find Full Text PDFThe unimolecular fragmentation channels of highly excited small cationic carbon clusters have been measured with a time-of-flight mass spectrometer after photofragmentation. The dominant channel is loss of the neutral trimer, for all C = 10-27 clusters except for = 11, 12 which decay by monomer emission, and C which shows competing loss of C and C. The results permit to quantify the role of the rotational entropy in the competition between monomer and trimer decays with the help of energies calculated with density functional theory.
View Article and Find Full Text PDFForty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH (refs. ), but so far it has not been observed outside the Solar System. Alternative routes involving processes on grain surfaces have been invoked.
View Article and Find Full Text PDFThe anharmonic infrared (IR) emission spectra of phenylacetylene CHCCH and an isotopologue CHCCD induced by 193 nm UV excitation have been investigated in the gas phase. The study has been operated with a homemade IR spectrometer enabling to record time- and wavelength-resolved spectra between 2.5 and 4.
View Article and Find Full Text PDFRecurrent fluorescence (RF) from isolated carbon clusters containing between 24 and 60 atoms is theoretically investigated as a function of internal energy, cluster size, and structural features. The vibrational relaxation kinetics and the associated IR emission spectra are determined by means of a Monte Carlo approach with vibrational density of states computed in the harmonic approximation. RF is generally found to be highly competitive with vibrational emission.
View Article and Find Full Text PDF