Publications by authors named "O L Zaika"

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined.

View Article and Find Full Text PDF
Article Synopsis
  • The TRPV4 channel is important for sensing how fluid flows in the kidneys and helps manage potassium (K) levels in the body.
  • Scientists tested mice with and without the TRPV4 channel to see how it affects K balance when eating different amounts of K.
  • They found that mice without TRPV4 had higher potassium in their blood on a high K diet but were better at conserving potassium when their diet was low in K.
View Article and Find Full Text PDF

Mechanosensitive TRPV4 channel plays a dominant role in maintaining [Ca ] homeostasis and flow-sensitive [Ca ] signaling in the renal tubule. Polycystic kidney disease (PKD) manifests as progressive cyst growth due to cAMP-dependent fluid secretion along with deficient mechanosensitivity and impaired TRPV4 activity. Here, we tested how regulation of renal TRPV4 function by dietary K intake modulates the rate of cystogenesis and mechanosensitive [Ca ] signaling in cystic cells of PCK453 rats, a homologous model of human autosomal recessive PKD (ARPKD).

View Article and Find Full Text PDF

Endovascular surgical procedures require visual-spatial coordination in workspaces with restricted motions and temporally limited imaging. The development of the skills needed for these procedures can be facilitated by 3D simulator-based training. Cerebral angiography (CA) has lagged behind in this training approach due to the lack of validated, realistic training models, relying strictly on clinical case exposure frequency ("number of hours logged") as a means of assessing proficiency.

View Article and Find Full Text PDF

The renal collecting duct is known to play a critical role in many physiological processes, including systemic water-electrolyte homeostasis, acid-base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl-permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters' syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis.

View Article and Find Full Text PDF