Publications by authors named "O L Woodman"

Background: Diabetic heart disease may eventually lead to heart failure, a leading cause of mortality in diabetic individuals. The lack of effective treatments for diabetes-induced heart failure may result from a failure to address the underlying pathological processes, including chronic, low-grade inflammation. Previous studies have reported that lipoxin A (LXA), known to promote resolution of inflammation, attenuates diabetes-induced atherosclerosis, but its impact on diabetic hearts has not been sought.

View Article and Find Full Text PDF

Background: There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models.

View Article and Find Full Text PDF

Aims: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.

View Article and Find Full Text PDF

The rapid development of large language models (LLMs), such as ChatGPT, has revolutionized the efficiency of creating programming tutorials. LLMs can be instructed with text prompts to generate comprehensive text descriptions for code snippets provided by users. However, the lack of transparency in the end-to-end generation process has hindered the understanding of model behavior and limited user control over the generated results.

View Article and Find Full Text PDF

Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis.

View Article and Find Full Text PDF