Publications by authors named "O L Muskens"

Since the beginning of the COVID-19 pandemic, there has been an increased need for the development of novel diagnostic solutions that can accurately and rapidly detect SARS-CoV-2 infection. In this work, we demonstrate the targeting of viral oligonucleotide markers within minutes without the requirement of a polymerase chain reaction (PCR) amplification step the use of oligonucleotide-coated upconversion nanoparticles (UCNPs) and graphene oxide (GO).

View Article and Find Full Text PDF

The "one-to-many" problem is a typical challenge that faced by many machine learning aided inverse nanophotonics designs where one target optical response can be achieved by many solutions (designs). Although novel training approaches, such as tandem network, and network architecture, such as the mixture density model, have been proposed, the critical problem of solution degeneracy still exists where some possible solutions or solution spaces are discarded or unreachable during the network training process. Here, we report a solution to the "one-to-many" problem by employing a conditional generative adversarial network (cGAN) that enables generating sets of multiple solution groups to a design problem.

View Article and Find Full Text PDF

Smart radiative cooling devices based on thermochromic materials such as vanadium dioxide (VO) are of practical interest for temperature regulation and artificial homeostasis, i.e., maintaining stable equilibrium conditions for survival, both in terrestrial and space applications.

View Article and Find Full Text PDF

In this review, the concept of open cavity lasing for ultrasensitive sensing is explored, specifically in driving important innovations as laser-based biosensors─a field mostly dominated by fluorescence-based sensing. Laser-based sensing exhibits higher signal amplification and lower signal-to-noise ratio due to narrow emission lines as well as high sensitivity due to nonlinear components. The versatility of open cavity random lasers for probing analytes directly which is ultrasensitive to small changes in chemical composition and temperature fluctuations paves the path of utilizing narrow emission lines for advanced sensing.

View Article and Find Full Text PDF

Germanium (Ge) ion implantation into silicon waveguides will induce lattice defects in the silicon, which can eventually change the crystal silicon into amorphous silicon and increase the refractive index from 3.48 to 3.96.

View Article and Find Full Text PDF