This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems.
View Article and Find Full Text PDFRecent evidence suggests that energy metabolism contributes to molecular mechanisms controlling stem cell identity. For example, human embryonic stem cells (hESCs) receive their metabolic energy mostly via glycolysis rather than mitochondrial oxidative phosphorylation. This suggests a connection of metabolic homeostasis to stemness.
View Article and Find Full Text PDFA series of N-(3-(4-hydroxyphenyl)-propenoyl)-amino acid tryptamides was based on a previously reported new SIRT2 inhibitor from our group, and it was designed to study if the molecular size of the compound could be reduced. The most potent compounds, N-(3-(4-hydroxyphenyl)-propenoyl)-2-aminoisobutyric acid tryptamide and N-(3-(4-hydroxyphenyl)-propenoyl)-L-alanine tryptamide, were equipotent, 30% smaller in molecular weight, and slightly more selective (SIRT2/SIRT1) than the parent compound.
View Article and Find Full Text PDFThe study's results showed reliable decrease in lipid peroxidation activity according to value of general sum of light, induced by hydrogen peroxide of initiated hemoluminescence and malonic dialdehyde concentration (P<0.05). The activity of antioxidant enzymes in the second group as compared with the control one has changed as follows: catalase concentration of blood serum of patients with ischemic heart disease increased by 59.
View Article and Find Full Text PDFThe aim of this study was to evaluate the effects of a diet supplemented with omega-3 polyunsaturated fatty acids (eicosapentaenoic and docosahexaenoic) and tocopherol, which are the base of a preparation "Tekom", on a composition of myocardial phospholipid fatty acids, as well as on the metabolism of eicosanoids, free radical processes and the contractility of isolated working heart in rats at ischemia/reperfusion. Added to the diet within 4 weeks, "Tekom" induced an increase in the content of omega-3 polyunsaturated fatty acids in membranes of cardiomyocytes, a decrease in vasoactive metabolites of arachidonic acid and limitation of free radical processes. "Tekom" inhibited cardiac arrhythmias in the isolated working hearts of rats and improved the cardiac pump function at ischemia/reperfusion.
View Article and Find Full Text PDF