Publications by authors named "O L Kimchi"

Bacteria have evolved many defenses against invading viruses (phage). Despite the many bacterial defenses and phage counterdefenses, in most environments, bacteria and phage coexist, with neither driving the other to extinction. How is coexistence realized in the context of the bacteria/phage arms race, and how are immune repertoire sizes determined in conditions of coexistence? Here we develop a simple mathematical model to consider the evolutionary and ecological dynamics of competing bacteria and phage with different immune/counterimmune repertoires.

View Article and Find Full Text PDF

When phage infect their bacterial hosts, they may either lyse the cell and generate a burst of new phage, or lysogenize the bacterium, incorporating the phage genome into it. Phage lysis/lysogeny strategies are assumed to be highly optimized, with the optimal tradeoff depending on environmental conditions. However, in nature, phage of radically different lysis/lysogeny strategies coexist in the same environment, preying on the same bacteria.

View Article and Find Full Text PDF

The self-assembly of complex structures from a set of non-identical building blocks is a hallmark of soft matter and biological systems, including protein complexes, colloidal clusters, and DNA-based assemblies. Predicting the dependence of the equilibrium assembly yield on the concentrations and interaction energies of building blocks is highly challenging, owing to the difficulty of computing the entropic contributions to the free energy of the many structures that compete with the ground state configuration. While these calculations yield well known results for spherically symmetric building blocks, they do not hold when the building blocks have internal rotational degrees of freedom.

View Article and Find Full Text PDF

The RNA-targeting CRISPR nuclease Cas13 has emerged as a powerful tool for applications ranging from nucleic acid detection to transcriptome engineering and RNA imaging. Cas13 is activated by the hybridization of a CRISPR RNA (crRNA) to a complementary single-stranded RNA (ssRNA) protospacer in a target RNA. Though Cas13 is not activated by double-stranded RNA (dsRNA) , it paradoxically demonstrates robust RNA targeting in environments where the vast majority of RNAs are highly structured.

View Article and Find Full Text PDF

We describe a simple method to infer intramolecular connections in a population of long RNA molecules in vitro. First we add DNA oligonucleotide "patches" that perturb the RNA connections, then we use a microarray containing a complete set of DNA oligonucleotide "probes" to record where perturbations occur. The pattern of perturbations reveals couplings between different regions of the RNA sequence, from which we infer connections as well as their prevalences in the population.

View Article and Find Full Text PDF