Publications by authors named "O Kondrashova"

Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors represent a significant advancement in the treatment of epithelial ovarian cancer, triple-negative breast cancer, pancreatic cancer, and castrate-resistant prostate cancer, and they are poised to improve treatment in an increasing number of other cancer types. PARP inhibitor efficacy as monotherapy has been primarily observed in tumors with deleterious genetic variants in genes involved in the homologous recombination repair pathway. Tumors without these variants have also been shown to respond; notably, those with hypermethylation at all alleles of the BRCA1 or RAD51C promoter can respond to PARP inhibitors.

View Article and Find Full Text PDF

The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer.

View Article and Find Full Text PDF

PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame.

View Article and Find Full Text PDF

In ovarian and breast cancer, promoter methylation of or is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types.

View Article and Find Full Text PDF

Epigenetic alterations, including aberrant DNA methylation, are now recognized as hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications.

View Article and Find Full Text PDF