Background: Recently, we developed the machine learning (ML)-based Progressive CKD Risk Classifier (PCRC), which accurately predicts CKD progression within 5 years. While its performance is robust, it is unknown whether PCRC categorization is associated with CKD-mineral bone disorder (CKD-MBD), a critical, yet under-recognized, downstream consequence. Therefore, we aimed to 1) survey real-world testing utilization data for CKD-MBD and 2) evaluate ML-based PCRC categorization with CKD-MBD.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
July 2024
To date, there are no widely implemented machine learning (ML) models that predict progression from prediabetes to diabetes. Addressing this knowledge gap would aid in identifying at-risk patients within this heterogeneous population who may benefit from targeted treatment and management in order to preserve glucose metabolism and prevent adverse outcomes. The objective of this study was to utilize readily available laboratory data to train and test the performance of ML-based predictive risk models for progression from prediabetes to diabetes.
View Article and Find Full Text PDFThe Internet of Things (IoT) is empowering various sectors and aspects of daily life. Green IoT systems typically involve Low-Power and Lossy Networks (LLNs) with resource-constrained nodes. Lightweight routing protocols, such as the Routing Protocol for Low-Power and Lossy Networks (RPL), are increasingly being applied for efficient communication in LLNs.
View Article and Find Full Text PDF