Publications by authors named "O Kazanskaya"

Pigment epithelium-derived factor (PEDF) is a potent multifunctional protein that inhibits angiogenesis and has neurogenic and neuroprotective properties. Since the wet form of age-related macular degeneration is characterized by choroidal neovascularization (CNV), PEDF would be an ideal candidate to inhibit CNV and support retinal pigment epithelial (RPE) cells. However, its short half-life has precluded its clinical use.

View Article and Find Full Text PDF

R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling.

View Article and Find Full Text PDF

Purpose: Genetic modification of cells before transplantation may allow the delivery of neuroprotective and other functional molecules to patients with neurodegenerative diseases. To avoid complications associated with virally transfected cells, we have explored the use of nonviral methods to insert genetic material into RPE cells.

Methods: After transfection with plasmids encoding different pigment epithelium-derived factor (PEDF) fusion proteins, transfected cells were established and passaged up to 100 times.

View Article and Find Full Text PDF

The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes.

View Article and Find Full Text PDF

Dickkopf-1 (Dkk1) is a secreted protein that negatively modulates the Wnt/beta catenin pathway. Lack of Dkk1 function affects head formation in frog and mice, supporting the idea that Dkk1 acts as a "head inducer" during gastrulation. We show here that lack of Dkk1 function accelerates internalization and rostral progression of the mesendoderm and that gain of function slows down both internalization and convergence extension, indicating a novel role for Dkk1 in modulating these movements.

View Article and Find Full Text PDF