Purpose Of Review: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating heritable channelopathy that can lead to sudden cardiac death in children and young adults. This review aims to explore genetics, the cardiac and extracardiac manifestations of mutations associated with CPVT, and the challenges involved with managing phenotypically variable variants.
Recent Findings: The understanding of the genetics and mechanisms of CPVT continues to grow with recent discoveries including alternative splicing of cardiac TRDN and calmodulin gene variants.
Controls on organic carbon preservation in marine sediments remain controversial but crucial for understanding past and future climate dynamics. Here we develop a conceptual-mathematical model to determine the key processes for the preservation of organic carbon. The model considers the major processes involved in the breakdown of organic carbon, including dissolved organic carbon hydrolysis, mixing, remineralization, mineral sorption and molecular transformation.
View Article and Find Full Text PDFBackground: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia disorder associated with lethal arrhythmias. Most CPVT cases are caused by inherited variants in the gene encoding ryanodine receptor type 2 (RYR2).
Objective: The goal of this study was to investigate the structure-activity relationship of tetracaine derivatives and to test a lead compound in a mouse model of CPVT.
Introduction: The recently developed Freiburg Index of Post-TIPS Survival (FIPS) allows improved risk classification of patients with decompensated cirrhosis allocated to transjugular intrahepatic portosystemic shunt (TIPS) implantation. This study investigated the prognostic value of the FIPS in patients hospitalized with acute decompensation of cirrhosis (AD), outside the setting of TIPS implantation.
Methods: A total of 1133 patients with AD were included in a retrospective, multi-centre study.
Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling.
View Article and Find Full Text PDF