Female and male hosts may maximise their fitness by evolving different strategies to compensate for the costs of parasite infections. The resulting sexual dimorphism might be apparent in differential relationships between parasite load and body condition, potentially reflecting differences in energy allocation to anti-parasitic defences. For example, male lacertids with high body condition may produce many offspring while being intensely parasitised.
View Article and Find Full Text PDFFaunal turnover in Indo-Australia across Wallace's Line is one of the most recognizable patterns in biogeography and has catalyzed debate about the role of evolutionary and geoclimatic history in biotic interchanges. Here, analysis of more than 20,000 vertebrate species with a model of geoclimate and biological diversification shows that broad precipitation tolerance and dispersal ability were key for exchange across the deep-time precipitation gradient spanning the region. Sundanian (Southeast Asian) lineages evolved in a climate similar to the humid "stepping stones" of Wallacea, facilitating colonization of the Sahulian (Australian) continental shelf.
View Article and Find Full Text PDFThe genus Karyolysus was originally proposed to accommodate blood parasites of lacertid lizards in Western Europe. However, recent phylogenetic analyses suggested an inconclusive taxonomic position of these parasites of the order Adeleorina based on the available genetic information. Inconsistencies between molecular phylogeny, morphology, and/or life cycles can reflect lack of enough genetic information of the target group.
View Article and Find Full Text PDFBackground: The movement and spatial ecology of an animal depends on its morphological and functional adaptations to its environment. In fossorial animals, adaptations to the underground life help to face peculiar ecological challenges, very different from those of epigeal species, but may constrain their movement ability.
Methods: We made a long-term capture-recapture study of the strictly fossorial amphisbaenian reptile Trogonophis wiegmanni to analyze its long-term movement patterns.