The pig is one of the earliest domesticated animals in the history of human civilization and represents one of the most important livestock animals. The recent sequencing of the Sus scrofa genome was a major step toward the comprehensive understanding of porcine biology, evolution, and its utility as a promising large animal model for biomedical and xenotransplantation research. However, the functional and structural annotation of the Sus scrofa genome is far from complete.
View Article and Find Full Text PDFWe evaluated the usefulness of lissamine green B (LB) staining of cumulus-oocyte complexes (COC) as a non-invasive method of predicting maturational and developmental competence of slaughterhouse-derived porcine oocytes cultured in vitro. Cumulus cells of freshly aspirated COCs were evaluated either morphologically on the basis of thickness of cumulus cell layers, or stained with LB, which penetrates only non-viable cells. The extent of cumulus cell staining was taken as an inverse indicator of membrane integrity.
View Article and Find Full Text PDFWe created gene-targeted pigs with mutations in the adenomatous polyposis coli (APC) gene (APC) that are orthologous to those responsible for human familial adenomatous polyposis (FAP). One-year-old pigs with the APC(1311) mutation (orthologous to human APC(1309)) have aberrant crypt foci and low- and high-grade dysplastic adenomas in the large intestine, similar to the precancerous lesions that develop in patients with FAP. Dysplastic adenomas accumulate β-catenin and lose heterozygosity of APC.
View Article and Find Full Text PDFRabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM) locus within exons 1 and 2.
View Article and Find Full Text PDFThe ability to perform precise genetic engineering such as gene targeting in rabbits would benefit biomedical research by enabling, for example, the generation of genetically defined rabbit models of human diseases. This has so far not been possible because of the lack of functional rabbit embryonic stem cells and the high fetal and perinatal mortality associated with rabbit somatic cell nuclear transfer. We examined cultured pluripotent and multipotent cells for their ability to support the production of viable animals.
View Article and Find Full Text PDF